Nonparametric Ridge Estimation

نویسندگان

  • Christopher R. Genovese
  • Marco Perone-Pacifico
  • Isabella Verdinelli
  • Larry A. Wasserman
چکیده

We study the problem of estimating the ridges of a density function. Ridge estimation is an extension of mode finding and is useful for understanding the structure of a density. It can also be used to find hidden structure in point cloud data. We show that, under mild regularity conditions, the ridges of the kernel density estimator consistently estimate the ridges of the true density. When the data are noisy measurements of a manifold, we show that the ridges are close and topologically similar to the hidden manifold. To find the estimated ridges in practice, we adapt the modified mean-shift algorithm proposed by Ozertem and Erdogmus [J. Mach. Learn. Res. 12 (2011) 1249–1286]. Some numerical experiments verify that the algorithm is accurate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...

متن کامل

A Modification on Ridge Estimation for Fuzzy Nonparametric Regression

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the Lagrangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the crossvalidation procedure for selecting the o...

متن کامل

Predictive performance of Dirichlet process shrinkage methods in linear regression

An obvious Bayesian nonparametric generalization of ridge regression assumes that coefficients are exchangeable, from a prior distribution of unknown form, which is given a Dirichlet process prior with a normal base measure. The purpose of this paper is to explore predictive performance of this generalization, which does not seem to have received any detailed attention, despite related applicat...

متن کامل

Nonparametric Modal Regression

Modal regression estimates the local modes of the distribution of Y given X = x, instead of the mean, as in the usual regression sense, and can hence reveal important structure missed by usual regression methods. We study a simple nonparametric method for modal regression, based on a kernel density estimate (KDE) of the joint distribution of Y and X. We derive asymptotic error bounds for this m...

متن کامل

Adaptive Posterior Mode Estimation of a Sparse Sequence for Model Selection

For the problem of estimating a sparse sequence of coefficients of a parametric or nonparametric generalized linear model, posterior mode estimation with a Subbotin(λ, ν) prior achieves thresholding and therefore model selection when ν ∈ [0, 1] for a class of likelihood functions. The proposed estimator also offers a continuum between the (forward/backward) best subset estimator (ν = 0), its ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1212.5156  شماره 

صفحات  -

تاریخ انتشار 2012